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SUMMARY 

In this paper the penalty function method is reviewed in the general context of solving constrained 
minimization problems. Mathematical properties, such as the existence of a solution to the penalty 
problem and convergence of the solution of a penalty problem to the solution of the original problem, 
are studied for the general case. Then the results are extended to a penalty function formulation of the 
Stokes and Navier-Stokes equations. Conditions for the equivalence of two penalty-finite element 
models of fluid flow are established, and the theoretical error estimates are verified in the case of 
Stokes's problem. 
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INTRODUCTION 

In 1941, R. Courant'32 suggested a novel method of obtaining better convergence (of the 
derivatives of the solution) in the Rayleigh-Ritz method. The method, as applied to the 
equilibrium problem for a membrane (02u = f in C! and u = 0 on the boundary r of a) under 
external pressure f, can be described as follows: Instead of considering the usual variational 
problem of minimizing the functional 

I ( u ) = ' h  2 [($y+ ( ~ ~ + 2 u f ]  dx dy, u = O  on r 

the method seeks the minimum of a modified functional obtained from the original 
functional by adding terms of higher order which vanish for the actual solution u :  

cu(V2u -f)2 dx dy 

where (Y is an arbitrary (preselected) positive constant or function. Courant termed the 
functional in (2) a 'sensitized' functional since it is more sensitive to variations of u without 
changing the solution. Another examnle of the use of this idea is provided by the inclusion of 
the essential boundary condition in the Dirichlet problem. The modified functional is given 

t Dedicated to my guru, Professor John Tinsley Oden on his 46th birthday. 
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Ip(u7 y) = I ( U ) + ~  I u2 ds 
2 (3)  

For sufficiently large values of y, the boundary value problem corresponding to the 
functional in ( 3 )  is almost equivalent to that associated with the functional in (1). 

Although the idea was motivated by physical considerations, its value as a technique for 
transforming a given constrained minimization problem into a (sequence of) unconstrained 
minimization problem(s) was not recognized immediately. The idea was apparently not 
rigorously pursued for over a decade. In 1954 there was renewed interest in the penalty 
function? method3 as a computational device in mathematical programming (see, for 
example, the 'logarithmic potential method' of Frisch," and the 'inverse penalty function 
technique' of Carroll5). In 1956 Moser' proved convergence of the solution of the penalty 
problem to the solution of the original problem. In 1957 a very significant contribution was 
made by Rubin and Unger6 which took the original technique of Courant out of the realm of 
conjecture for a much wider class of problems. They generalized Courant's technique to 
multiple variables and multiple equality constraints, and provided a convergence proof and a 
proof of the existence of Lagrange multipliers. Apart from these results, there was no 
significant theoretical development of the technique for a long time. However, the penalty 
function technique was often used as a computational device to approximate solutions of 
variational problems. There have been numerous papers devoted to various modifications of 
the method and their applications to particular problems; see References 7 and 8 for 
applications in mathematical programming and optimization, and Reference 9 for an 
application in meteorology. 

The first use of the penalty function method in the finite-element analysis of a constrained 
minimization problem was apparently due to Babuska," who proved the existence and 
uniqueness of the finite element solution to the penalty-function formulation of the Dirichlet 
problem for Poisson's equation (i.e. the finite-element formulation of the variational problem 
associated with the functional in equation (3 ) ) .  

Despite its wide use in mathematical programming and optimization, the penalty function 
method was not regarded? until recently, as a powerful computational device. This is mainly 
due to two shortcomings: (i) the technique was used in connection with the approximate 
solution of variational problems by Rayleigh-Ritz type methods, which were themselves 
never regarded as competitive when compared to the traditional finite difference methods; 
(ii) in the practical application of the penalty function method, the penalty terms 'misbehave' 
without proper selection of the approximation functions or integration. These two shortcom- 
ings were overcome by the finite element method (and reduced integration techniques). In 
1973, the penalty function method was introduced into the finite-element analysis of fluid 
flow problems by Zienkiewicz." However, the second shortcoming was not overcome until 
Zienkiewicz, Taylor and Too1' devised, rather ingeniously, the so-called reduced integration 
technique, which was later used by Zienkiewicz and his colleagues13314 in the numerical 
integration of the penalty terms. Thus, over three decades after the original idea was 
suggested, the penalty function method was brought into the realm of computational 
mechanics (especially into finite element analysis) where it now serves as a simple yet 

T The word 'penalty function' was first used by T. N. Edelbaum in Chapter 1 of the book on optimization techniques 
edited by Leitmann.3 
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effective computational technique of handling physical as well as mathematical constraints. 
Exploitation of further generalizations and extensions of the technique in the finite-element 
solution of a variety of engineering problems is the current state of the t e c h n i q ~ e . ~ ~ - ~ ~  

Following this introduction to the historical development of the penalty function method, 
the basic idea of the method and the mathematical properties are reviewed for the abstract 
(linear) problem of determining the minimum of a quadratic functional subjected to an 
equality constraint. As a specific example of the abstract problem the Stokes problem 
associated with the slow laminar motion of an incompressible fluid is presented. The abstract 
problem enables one to apply the penalty method to any constrained minimization problem. 
Subsequent sections are devoted to the application of the penalty function method to the 
stationary Navier-Stokes equations. Existence and uniqueness of solutions to the penalty 
function formulation of the Navier-Stokes equations are discussed and error estimates are 
given. Conditions for the equivalence of two penalty models of fluid flow are established, and 
the influence of the penalty parameter on the solution is investigated; the theoretical error 
estimates are verified numerically for the Stokes problem. 

THE PENALTY FUNCTION METHOD 

Consider the following variational problem: Find the minimum of the functional, 

in a Hilbert space H,,  subject to the constraint, 

G(u) = 0 ( 5 )  

where G is, in general, a non-linear operator from H s  into some Hilbert space H,. The 
solution u belongs to a subspace of HI. 

The problem is ordinarily solved by means of the Lagrange multiplier method (saddle- 
point problem), which seeks to find the stationary values (u, A)  of the modified functional, 

L(u, A)  = I (u )+  I, hG(u) dx dy 

on the product space HL = H ,  x H2. Here h denotes the Lagrange multiplier. 
The penalty function method reduces problems of conditional (or constrained) extremum 

to problems without constraints by the introduction of a penalty on the infringement of 
constraints. Instead of solving the original problem, the minimum of the functional 

on the whole of H ,  is sought for some a, > 0. Here 1) *Ilw, denotes the norm in H2. 

penalty problem. 
The following theorem (see PolyakZ5) guarantees the existence of solution (&, A,) to the 
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Theorem 1 

Let the following assumptions be satisfied: 
(i) There exists a local point of minimum uo in H ,  of I (u ) ;  that is, 

(a) I ( u o ) s I ( u ) ,  for every u in HI 

(c) if G(u)  = 0, then J I u  - 
(b) G(uo)=O 

5 8, e > 0 

(ii) In an s-neighborhood of uo the first and second (Gateaux) derivatives of I and G exist, 
and the second derivatives satisfy the Lipschitz conditions 

(iii) The adjoint A* of the linear operator A = SG(u,, .) has a continuous inverse on H,, 

llA*qllz Y 11q11~,~ Y >0, for all q in H2 (10) 

Then the Lagrange multiplier, Po, exists in H, such that 

where 

Here, ( a ,  *) denotes inner product in H,. 
In addition to above assumptions, let the following assumption be satisfied: 
(iv) The linear self-adjoint operator, A= 6$L(uo, Po; *, .) is positive-definite in the sense 

that there exists M > 0 such that 

for every 5 in H,. 
Then there exists a u, which is the unique point of local minimum of Jn(u) in an 
s-neighborhood of uo, and an approximation to the Lagrange multiplier, 

such that 

where the constant C1 is independent of a,,. 

next section we consider a special case of the abstract problem presented here. 
An elegant proof of the theorem is given by P01yak;’~ see also References 26 and 27. In the 
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APPLICATION TO STOKESIAN FLOWS 

Here we consider an example of the theory presented in the previous section. We consider 
the Stokes problem, which consists of determining the solution (u, v, P)  to the equations 
governing the slow, two-dimensional flow of a viscous incompressible fluid: 

a2u a au av aP 2p--+p-- -+- --=.f 

a2v a au a~ aP 
a y  

ax2 a y  (a, ax) ax 

ax (ay ax) a y  y’ 
2 p y + p -  -+- --=f i n n  

a u  av -+-=0 
ax ay  

Here (u, u )  denote the velocity components, P the pressure, p the viscosity, and f, and f,, 
denote the body force components. The velocity field must also satisfy certain boundary 
conditions of the problem. For simplicity we assume that u = v = 0 on the boundary aSZ of SZ. 
The problem can be viewed as one of seeking the solution (u, v) in Hl(0) = HA(SZ) x HA(O) 
such that equation (18) is satisfied and the functional 

is minimized. The pressure drops out of the functional owing to the fact that the velocity field 
satisfies the incompressibility condition (18) identically. Once the velocity field is known, the 
pressure can be calculated from equation (17) (or from the Poisson equation for pressure). 
Clearly, the Stokes problem has the same form as the abstract problem in equations (4)-(9, 
with 

a u  av 
G(u, v)E-+-, ax a y  G: [H;(0)]2-+L2(SZ) 

The functional in the Lagrange multiplier method is given by 

L(u, v, A)  = I(u, v)+  AG(u, v) dx dy d 
Computing the first variation of L(- )  and determining the Euler equations, one observes (by 
comparing the Euler equations with (17)-( 18) that the Lagrange multiplier A E L2(SZ) is 
indeed the negative of the pressure, 

The penalty functional in equation (7)  become^^*^^^ 
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The Lagrange multiplier h = -P is given by (it can also be verified by comparing the Euler 
equations of J with those of L) ,  

Note that equation (24) is deduced from the penalty functional, J, ; it does not form the basis 
of the penalty method, as implied in a number of papers on the subject, but is a consequence 
of equation (23). If one starts with equation (24) to describe the penalty function method, 
not only is the reader misinformed but he is also confused because there is no obvious reason 
to assume that the pressure P is related to the velocity field through equation (24). 

An alternative, but equivalent, penalty function formulation of the Stokes problem is 
possible (only in retrospect!). If we replace the continuity equation (18) by equation (24) 
(and replacing P in equation (17) by P,), we obtain the functional (compare this with the 
Lagrange multiplier functional), 

Note that as the limit n --j 
(u, v ,  P).  The error estimate in equations (15) and (16) becomes 

(i.e., a,, -+ m), the functional .f, approaches L with (4, v,, P,) --+ 

These error estimates imply that the solution (u,, v,) to the penalty problem corresponding 
to the Stokes problem converges to the true solution (u, v), and that the error is proportional 
to (lla,). In the section on the numerical results we will show that this theoretical estimate is 
also c o n k e d  by the numerical experiment. 

It should be pointed out that Theorem 1 holds only for linear problems which can be cast 
as one of minimizing a functional subject to a constraint. In the case of Navier-Stokes (N-S) 
equations, Theorem, 1 does not hold and therefore an independent result is needed. In the 
next section we investigate the questions of existence and uniqueness of solutions to the 
steady Navier-Stokes equations for two-dimensional incompressible flows, and then establish 
that the penalty solution converges to the true solution (existence of the true solution has 
been already established by Girault and Raviart3'). 

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO N-S EQUATIONS 

Here we present the existence and uniqueness (under certain conditions) of the solution to 
the penalty problem associated with the Navier-Stokes equations. Since the alternative 
penalty formulation (see equation (25)) resembles the Lagrange multiplier (or mixed) 
formulation, the results of Girault and Raviart3' for the mixed formulation can easily be 
extended to the penalty problem. First certain mathematical preliminaries are in order. 
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Mathematical preliminaries 

Let Q be a bounded domain in the two-dimensional Euclidean space R2 with a Lipschitz- 
continuous boundary aR. A typical point in will be denoted by x = (xl, xz), and let LZ(O) 
be the space of all square integrable functions defined on R. The inner product and the norm 
in Lz(R) are given by" 

For any integer rn L 0 the Hilbert space of order m on R, H"(R), is defined by3' 

H"(R)={u: UEL,(O), D a u ~ L 2 ( f I ) ,  \ a I ~ r n }  (27) 

equipped with the inner product and norm, 

(u, u), = 1 D"v),, Ilullm,n = ( c llD"ull;,n)* (28) 
/a/srn /a/c?I, 

Herein (27) and (28), the multi-index notation is used: a =(a,, a,), ai are non-negative 
integers, and 

Further, let Lp(R) denote the space of all pth integrable functions defined on 0, with norm, 

and let 

H,"(R)={u: u ~ H ~ ( f 2 ) ,  D"u larz=O,Ial<rn} (31) 

/ I ~ l l o , n ~ c 1  l u l m  (32) 

It is well known that for every u E HA(R), there exists a constant c, = cl(R) such that3' 

which is known as the Poincar6-Friedrich inequality. Hence, the seminorm is a norm over 
the space H;(R) for all functions defined over the bounded set, CR. Also, by Sobolev 
imbedding theorems, it follows that the imbedding H1(R) -+ L,(LR) is compact, and 

llUIIL,fn) 5 cz Il4,n (33) 

Penalty function formulation of the Navier-Stokes equations 

Consider the stationary (steady) Navier-Stokes equations governing an incompressible 
viscous fluid confined in 0: Find the velocity field, u = (ul, uz) and the pressure, P defined 
over R such that, 

au 
i-l  axi 

-vV2u+ c ui-+gradP=f i n n  

div u = 0 in R, u = 0 on an 
(34) 

where f = (fl, f2) is the body force vector, v is the kinematic viscosity of the fluid, and P is 
the pressure divided by the density. The weak variational formulation of the Navier-Stokes 
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equations (34) involves seeking a pair (u, P )  [H:(0)12 X fi'(0) such that 

1 au. avi a 4  
axj axi axi v2 - + uj - vi -fivi dx = 0 

for all v E [H:(0)12, subject to the (constraint) condition, 

div u = 0 

Here we used the notation, 

[H;(0)l2 = H:(iR) x HA(0), fi'(0) = { P: P E L2(R), P dx = 0 I , ]  
That is, the solution (u ,P)  of (34) belongs to the space 

X = {(u, P):  u E [Hi(0)l2, P E fio(0), div u = 0 in 0) 

Next we define the following bilinear and trilinear forms, 

G(u, v) = I, div u div v dx 

The penalty formulation of equations (34) involves seeking u = u, such that 

(a) uE E [Hd(0)I2 = { u :  
(b) vB(u,v)+N(u, u , v ) + ~ - ' G ( u , v ) = ( f , v ) ,  V E [ H ; ( ~ ) ] ~  

The Lagrange multiplier, P, E fi'(0), can be computed from, 

E [H:(Q)I2, II~III,~,~ = IIuIIi,a+ E-'G(u, u)>, 

where E is the penalty parameter (inverse of a, in (23)). 

(35)  

(36) 

(37) 

(39) 
(40) 

P, = -&-I div u, (42) 
Existence and Uniqueness 

Theorem 2. There exists a solution to the penalty-variational problem (40) for any E, 

0 < E < 1. The solution is unique for sufficiently large v. 

Proof. First it is shown that the auxiliary problem, 

A,(w, u)+s-'G(w,  v)=(f ,  v), A,(*, *)=vB(*, *)+N(u,  ., *) (43) 

has a unique solution w E [H;(0)]" for fixed u E [H;(0)]". Then the mapping Tu = w is shown 
to have a fixed point, thereby the proof of existence is completed. The part of the proof 
which shows that the mapping T has a fixed point is too long and will not be repeated here. 
For details see References 32 and 36. 

Existence of a unique solution to (43) is guaranteed by the Lax-Milgram theorem. That is, 
if A,(*, -) is [H~(0)]2-elliptic (continuity is obvious) it follows that equation (43) has a 
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solution w in [H:(0)l2. To this end note that, for u, v, w E [H;(0)12, 

-[N(u, V, W)+N(W, W, v)]=M(u, v * w), M(u, Q)= (div u)Q dx b 
and the Brezzi condition,33 

= c3 IIQIIHw, 
where H-l(fZ) is the dual (space) of H;(R), H-l(fI) = (HA(0))’. Therefore, 

or 

Then 

Choosing a such that, 0 < a < v, 

(44) 

(45) 

for u E C={u: u E [H;(0)]’, lldiv ullos 1). That is, A,(., .) is [H~(fI)]’-elliptic for u E C. Hence 
there exists a unique solution w E [H;(0)l2 for every u E C. The mapping T: C 4 C defined 
by 

Tu = w (48) 

has a fixed point in C. This completes the proof of the theorem. 
Next we estimate the error between the solution (u,) to the penalty problem and the 

solution ( u )  to the original problem. The alternative penalty formulation involves seeking 
(us, P,) E [H;(Q)l2 x fio(0) = k, such that 
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for every (u, 0) E 2, and 0 < E < 1. The mixed formulation of the Navier-Stokes equations 
involves determining (u, P)  E [fi:(n)I2 x fio((n) = 2 such that 

for every (v, Q) E 2. Existence of solution (u ,  P )  E [H:(fk)l2 X f i " ( C n )  to (SO) can be proved 
using a generalized Lax-Milgram theorem due to B r e ~ z i . ~ ~  Existence of solution (u,, P,) E A, 
to the penalty formulation (49) follows along the same lines. Alternatively, since the solution 
u, E [Hi(0)]2 to (40) exists and is unique for u, E C, it follows from the second equation in 
(49) that P, is unique. 

Subtracting equation (49) from equation (SO), we get 

vB(u-u,,u)+N(u,u,v)-N(u,,u,,v)-M(v,P-P,)=O 
-M(u-u,, Q)-E(P-P, ,  0 > o = - ~ ( P ,  Q)o (5  1) 

for every (v, Q)E%.. It can be shown that 

Further, 

v /us - ul?,n = vB(u - u,, u - u,) = N(u, u, u, - u )  -N(u,, u,, u, - u )  - M(u,  - u, P-P,), 

= [ N u ,  u, us-u)-N(u,, us, u,-u)]--E. Ip-P,ll:+E(P,P-P,)o (53) 
Now consider the term in the square brackets. Assuming that the trilinear form N(., *, .) 
satisfies the condition, 

we write 

I[*--]1=IN(u,, u-u,, us-u)+N(u-u,, u, u,-u>l 

5 Z C l C 2  1 lu - u, I?,n+ P lu - u, I?,n luI1,n (55)  1 2 2  

1 
48  

Using the elementary inequality ab 5- a2+8b2,  8 > 0 ,  equation (53) can be written as 

P C l  Choosing 8 = 1 in the above equation and letting q = a! -- I l f l lo ,  we obtain 
a 

12.4 - u, I1,n 5 CJE l l ~ o l l o  (56 )  
Thus, the solution (u,) to the penalty problem in (49) converges to the solution ( u )  of the 
mixed problem in (SO) as E goes to zero. The rate of convergence is only 1/2 as opposed to 1 
in the Stokes f l o ~ . ~ ~ , ~ ~  

Existence of solutions to the discrete problem (e.g., finite-element approximation) as- 
sociated with equation (40) can be established only if the Brezzi condition holds for the 
finite-dimensional spaces. This is an area where much research needs to be done; in this 
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connection the works of Oden and his  colleague^^^^^^*^^ should provide a starting point. It 
should be pointed out that the parameter 0 in equation (54) should be a constant 
independent of the mesh parameter,33 or a constant dependent on a positive power of the 
mesh parameter, = h", o > O  (see Reference 35). 

EQUIVALENCE OF THE FINITE ELEMENT MODELS OF FLUID FLOW 

In this section we establish the equivalence of the numerical models based on the functionals 
in equations (23)  and (25) .  Although the present discussion is focused on the Stokes 
problem, the discussion given below is equally valid, as will be seen, for Navier-Stokes 
equations. 

Let u, c [H:(0)l2, U h  c H;(a) ,  and v h  c fio((n) be the finite-dimensional subspaces, and 
define 

B(u, u) = v grad u * grad u dx 

G(u, u) = div u * div u dx h (57) 

M (  u, 0) = J (div u) Q dx 
R 

Now we give the discrete analogues of the two penalty models. 

Penalty Model I (conventional) 

that 
The approximate problem associated with functional in (23)  involves seeking u; E iL$, such 

B(u;,  u h ) + % G ( U ; ,  u h ) = ( f ,  uh)o  (58) 

for all 2)h E U ~ .  

Penalty Model II (mixed) 

involves finding the pair (G:, P;),)EUJ, x v h  such that 
The discrete analogue of the variational problem associated with the functional in (25 )  

for every 2)h E U ~  and Qh E v h .  The equations (59) have a solution provided M(. ,  -) satisfies 
the approximate Brezzi condition: 
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It should be pointed out that the continuous Brezzi condition (45) does not imply, in general, 
the approximate Brezzi condition (60). A sufficient condition for (60) to hold was given by 
M e r ~ i e r . ~ ~  If the approximate Brezzi condition is satisfied, then the problem (59) has a 
unique solution (the proof is similar to that given in Theorem 2). 

Equivalence of the models 

following case: 
The equivalence of the two penalty models described above can be established for the 

(61) div ( U h )  c v h ,  e]h = uh x u h .  

Theorem 3. The conventional and penalty models (Models I and 11) are equivalent if the 

Proof. We prove the equivalence using ideas similar to those employed by Oden and 

condition in (61) holds. 

R e d d ~ . ~ ~  Subtracting the first of equation (59) from (58),  we get 

Since div ( U h )  c v h ,  every element v h  in U h  is of the form, Oh = div Uh, Qh E v h .  Hence, from 
the second equation in (59), we have 

Since h(., a )  is coercive on [H:(fi)l2, it follows that u;= E;t. 
In an independent study Malkus and Hughes3' (see also Reference 39) discussed the 

equivalence of certain mixed finite element methods with displacement methods which 
employ reduced and selective integration techniques. These are similar to the model 
discussed here. It should be cautioned that the Lagrange multiplier model is not equivalent 
to Model 11. 

A NUMERICAL EXAMPLE 

In this section we illustrate via an example problem some of the ideas discussed in the 
previous sections. Specifically, we discuss the equivalence in the light of exact and reduced 
integrations, investigate the influence of the penalty parameter a, on the accuracy, and 
verify the error estimates for Stokes's problem. 

Finite-element models 

Let u, v and P be interpolated, in a typical element fie, by 

i I i 

where Ni and Nf are the element interpolation functions (r 2 s). 
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Substituting (65) for u and v into the first variation of the functional in (23), we obtain 

(66) 
c ~ , [ S ~ ~ ]  [K12]+a,[S12] 

where 

x1 = x, x2 = y, and t,(a = 1,2) denote the surface tractions on the boundary 
element, and f ,  denote the body forces. 

Substituting (65) into the first variation of the functional in (25), we obtain, 

of the 

(68) 

where 

Note that the element equation (68) is of the same form as that associated with the Lagrange 
multiplier functional (called mixed model) in (21), except for [K33] which is zero in the mixed 
model. 

Equivalence of models I and XI 

To establish the equivalence between the two models, we eliminate {P} from Model I1 by 
solving the third equation in (68) for {P}: 

{ P }  = - s [K~~] -~ ( [K~~]~{u}+  [K2’IT{v}) (70) 
Substituting equation (70) into the first two equations in (68), we obtain 

(7 1) 
a,[&11] [K’”]+a,[&’”] {u) {F1} 

[KZ7]+a,.[&”z1] {(v}}= {{F’}} 

where 

[&ll] = [K13][K33]-1[K13]T, [&12] = [K13][K33]-1[K23]T 
[&22] = [K23][1(33]-1[K23]T (72) 

Now comparing equation (66) with equation (711, we must have, in order Models I and I1 
to be the same, 

[S”] = [&11], [S’”] = [ P I ,  [ P I  = [It221 (73) 



164 J.  N. REDDY 

Now we wish to numerically verify, for a specific element, that the equivalence holds. We 

Case 1 : Bilinear interpolation of the velocity field and constant (discontinuous) approxi- 

Case 2: Bilinear interpolation of the velocity field and continuous (bilinear) approxima- 

In each case the effect (and type) of reduced integration on the equivalence will be discussed. 
For simplicity the rectangular element with sides a and b is chosen for the study. Table I 

shows various matrices computed using exact integration and by two different reduced 
numerical integrations. Clearly, reduced integration using one method does not yield the 
same result as other methods (since the quadrature errors are different for different 
methods). 

Case 1 (FEM-1). Matrices [K13], [K23],  and [K33]  are given by (reduced as well as exact 
integrations give the same result), 

shall consider the following two approximations: 

mation of the pressure. 

tion of the pressure. 

-b -U {Ey}=y{-l, 1,1, -l}T,{ET}=~{-l, -1, 1, l}T, K3’=ab S X l  (74) 

We compute [I?’], and and find them to be 

[k4] = [Pa] ,  (a, p = 1,2). (75) 

That is, Models I and I1 are equivalent, for Case 1, if the penalty terms are evaluated 
numerically using one-point Gauss quadrature. However, the equivalence does not hold if 
the penalty terms are evaluated using the trapezoidal rule. 

Case 2. In this case the matrices [K13], [K”], and [K33] can be identified with 

[K13] = [SoilT, [K23] = [So’]*, [K”] = [So”] 

We have the following five alternatives in this case: 
(i) If all of the matrix coefficients are evaluated exactly, the resulting matrices satisfy the 

identities in equation (73); hence, equivalence of Models I and iI holds. 
If the one-point Gauss rule is used to evaluate the penalty terms in both models, we 
note from Table I that [K33] = [S”]  is a singular matrix, therefore, Model I1 cannot 
be identified with Model I. In other words, pressure cannot be calculated from (70). 
If the trapezoidal rule is used to evaluate the penalty terms in both models, 
equivalence of Models I and I1 holds; however, the matrices are different from those 
obtained in Case 1, as can be seen from Table I. 
If the trapezoidal rule is used to evaluate the Gram matrix, [ S O ’ ] ,  and the one-point 
Gauss rule is used to evaluate the penalty terms in both models, equivalence of 
Models I and I1 holds. In this case, the matrices are identical to those obtained in 
Case 1, but differ from those obtained in (i) and (iii). This alternative is equivalent to 
(ii), except that the pressure is calculated using [So’] which is computed by the 
trapezoidal rule. 
If the Gram matrix is evaluated exactly, and the one-point Gauss rule is used to 
evaluate the penalty terms in both models, equivalence of Models I and I1 holds. 
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Table I. Exact and reduced numerical integration of the matrices in equations (67) 

Reduced integration 
Matrix Exact integration* 

Trapezoidal rule One-point Gauss rule 

4 2 1 2  

-2 2 1 -1 

-2 -1 1 2 

2 -2 -1 

1 -1 -1 

1 -1 -1 
2 1 -1 -2 

2 -2 -1 

ab 
4 
- 

b 
4 
- 

a 
4 
- 

b 
2a 
- 

1 
4 
- 

a 
2b 
- 

symm. 1 0 

0 - 1 1 0  
0 - 1 1 0  

-1 0 0 1  

- 1 1 -1 -1 

-1 -1 1 1 
1 1 -1 -1 

1 1 1 1  

-1 1 1 -1 

1 -1 -1 

1 -1 -1 

1 -1 -1 
1 1 -1 -1 

* 2-point Gauss rule and one-third Simpson's rule also give the same result. 

Apparently, this case appears to be equivalent to the piecewise constant pressure 
model of Case 1. 

We shall denote the finite element models discussed in (i)-(v), respectively, by FEM-2, 
FEM-3,. . . , FEM-6. 

Pressure calculation 

The pressure in a typical element can be calculated in each of the above approximations 
using equation (70). For Case 1 (model FEM-l), we have, 



A

For (iv) and (v) of Case 2 (models E M - 5  and FEM-6), we have from (70), 

Clearly, equations (77) and (78) are equivalent. Further, they yield the same values since the 
velocities obtained in both of the models are the same. 

For (i) and (iii) of Case 2 (models FEM-2 and FEM-4), we have from (70), 

-1 0 0 1  

0 0 - 1 1 0  -1 1 0] [ ~ } ~  (79) 

-1 0 0 1 u 4 e  

Although the same equation is valid for both of the models, they do not yield the same 
pressures since the velocities obtained by models FEM-2 and FEM-4 are different, as 
pointed out in alternative (iii). 

Influence of the penalty parameter on the accuracy 

To investigate the influence of the penalty parameter a, on the solution (u,, u,, P,,), the 
problem of natural convection in a square enclosure (in the presence of a constant thermal 
gradient between the two vertical walls, while the two horizontal walls are insulated; see 
Figure 1) is solved for R a  = Pr = 1 (see Reference 21 for additional information). 

Table I1 shows the velocities and stream function values for a, = lo3, lo8, for models 
FEM-1, FEM-2 and FEM-4. The stream function is computed from the velocity field by 

Figure 1. Finite element mesh and boundary conditions 
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Table 11. Comparison of the velocities and stream function as computed by 
various models 

Model Model Mode1 
a, Variable x or y FEM-1 FEM-2 FEM-4 

V ( X ,  0.5) 
lo8 x 102 

v (x, 0.5) 
lo3 x102 

0.08 
0-22 
0.36 

0.08 
0.22 
0.36 

0.08 
0.22 
0.36 
0.50 

0.08 
0.22 
0.36 

0.08 
0.22 
0.36 

0.08 
0-22 
0.36 
0.50 

0.20035 
0.40263 
0.24402 

-0.29645 
-0.40379 
-0.24593 

0,11858 
0.60875 
1.0635 
1.2357 

0.30105 
0,40387 
0.24490 

-0.29556 
-0.40243 
-0.24506 

0.11937 
0.60965 
1-0640 
1.2359 

0.468 X 10 -6 

0.450 x 
0-259 x 

-0.440 X 
-0.429 X 
-0.247 x 

0-188 x lo-' 
0-813 x 
0.130 X 
0,147 x 

0-04081 
0.04010 
0.02315 

-0.03809 
-0.03797 
-0.02198 

0,01639 
0.07134 
0.11438 
0.13012 

-0.982 x 
-0.319 x 

0-982 x lo-' 

0.982 x 
0.791 x 

-0.982 X 

-0.393 x lo-' 
-0-393 X lo-' 
-0.108 x lo-' 

0.294 x 

-0.01287 
-0.00321 

0,01239 

0.01768 
0.00788 

-0.01285 

-0.00576 
-0.02196 
-0.01735 
-0.00787 

solving the Poisson equation 
- a u  a u  

ax a y  
-V +----in 

+ = 0 on as2. 
Clearly, the solutions obtained by models FEM-2 and FEM-4 are meaningless. In other 
words, equal interpolation both without reduced integration and with reduced integration by 
the trapezoidal rule for the penalty terms result in wrong solutions. 

Table I11 shows the influence of the penalty parameter on the velocities, pressure, and 
stream function as computed by model FEM-1. As can be seen, the 'accuracy' increases with 
increasing a,. Also, note that the stream function is relatively less sensitive to the penalty 
parameter. The solution is unchanged for a, = lo6, lo8, 10". For a, > loio, the roundoff 
errors in the computer gradually increased until a, = 5 X for which the coefficient 
matrix became singular. Figure 2 shows plots of the log of error, 11#8-(ba.II in a typical 
variable # versus log a, = n. All of the slopes were measured to be unity, thus verifying the 
theoretical error estimate for the Stokes problem. However, the numerical convergence for 
Ra = lo4 shows that the theoretical estimate is a conservative one for the Navier-Stokes 
equations. 
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Table 111. Influence of the Penalty Parameter on the Solution of the Natural Convection Problem 

P 
ffn u(o.s, 0.22) x lo3 -v(0.22,0.5) x lo3 ~l(0.5, 0.5) x 103 (element 28) 

1 
10 
1 o2 
lo3 
1 o6 
1 os 
1 o ' O  

1012 

1 o4 

loi3 
0.5 x loi3 

6.1957 
4.8646 
4.1449 
4.0387 
4.0276 
4.0264 
4-0263 
4.0264 
4.0269 
3.8141 

1.5565 1.2824 
3.1060 1.2492 
3-9074 1.2374 
4.0243 1.2359 
4.0365 1-2357 
4.0379 1.2357 
4-0379 1.2357 
4.0379 1.2357 
4.0387 1.2359 
3-8200 1.1745 

Zero appeared on the diagonal 

0.8781 
0.1552 
0.1233 
0-1070 
0.1050 
0.1048 
0.1048 
0.1048 
0.1068 
0.1523 

2 .c  

1 .c 

W 

a 
m 
7 

.r 2 0.c 
> 
,.-- 
iu u 
n .r 

3 
4 -1.c 
v) 
.F 

8 

9 

X 8 
- 
, -2.c 
m 
e- 

__ ___ 
0 
,-, 
m 
0 
? 

-3.0 

-4.0 

-5.0 

"checker board" 
b 
\ 

a 
\ 

a l l  slopes a re  
equal t o  1 

Figure 2. Accuracy (i.e. error estimates) of the penalty-finite element 
solutions of natural convection in a square cavity. 4" is the solution 

corresponding to a = 10" 
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SUMMARY AND CONCLUSIONS 

The idea of the penalty function method is reviewed as a variational technique that transforms 
a constrained minimization problem into a problem of unconstrained minimization(s). 
Existence and convergence of the solution to the penalty problem are also reviewed. 
Application of the penalty function method to Stokes problem with the divergence free 
condition as a constraint is discussed, and existence and uniqueness of solutions to the 
penalty function formulation of the Navier-Stokes equations are proved. Equivalence of 
conventional and mixed penalty-finite element models of fluid flow is established for a 
particular element, and theoretical error estimates for the Stokes flow are verified numeri- 
cally. It is found from the numerical studies that the error estimate for Navier-Stokes 
equations is the same order as that in the Stokes problem. Thus, the theoretical error 
estimate in (56) is not optimal. 

The finite element model that employs bilinear interpolation for the velocities and 
constant interpolation for the pressure is equivalent to the model that employs bilinear 
interpolation for all of the variables but uses the reduced Gauss rule for the numerical 
integration of the penalty terms. Further, use of the trapezoidal rule for numerical evaluation 
of the penalty terms is found to result in erroneous results. Thus, the type of numerical 
quadrature is crucial (for the penalty terms) for the success of the penalty method for 
incompressible fluid flow. 

In all of the models discussed herein, it was discovered that a ‘chequer board’ pattern of 
the pressure was present. Model E M - 1  (equivalent to models EM-3 ,  FEM-5, and E M - 6 ,  
except for the pressure calculation) is found to give most reliable results for the velocities 
and pressure. It is computationally economical to use Model I over Model 11, and then use a 
desirable approximation schemez4 to determine the pressure. Further study must be carried out 
to determine the effect of the type of reduced integration (e.g., the three-point Gauss rule35) 
on the solution. For a penalty-finite element analysis of three-dimensional flows, see a recent 
study by the author.40 
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